📊 Data Engineering & Headless BI Infrastructure

Scaled data engineering pipelines and built headless BI infrastructure using modern data stack technologies for real-time analytics and insights. Created comprehensive data platforms that enable self-service analytics and data-driven decision making.

System Architecture

Built modern data stack architecture using cloud-native technologies with ELT approach, real-time processing capabilities, and API-first design for headless BI.

Core Components:

  • Data Ingestion - Multi-source data collection and validation
  • Data Lake - Centralized data storage with DLThub
  • Data Transformation - SQL-based transformations with DBT
  • Metrics Layer - Semantic layer with Cube.dev
  • API Layer - RESTful APIs for data consumption
  • Monitoring - Data quality and pipeline health monitoring

Key Technologies Used

🔄 ELT Pipeline

  • Fivetran - Automated data extraction and loading
  • Airbyte - Open-source data integration platform
  • Custom Connectors - Custom data connectors for proprietary systems
  • Real-time Streaming - Kafka-based real-time data streaming
  • Batch Processing - Scheduled batch data processing

🏗️ Data Transformation

  • DBT (Data Build Tool) - SQL-based data transformation
  • Data Modeling - Dimensional modeling and data marts
  • Data Quality - Automated data quality testing
  • Documentation - Automated data lineage and documentation
  • Version Control - Git-based version control for data models

🏞️ Data Lake

  • DLThub - Data lakehouse architecture
  • Delta Lake - ACID transactions on data lakes
  • Data Governance - Data catalog and metadata management
  • Data Partitioning - Optimized data partitioning strategies
  • Data Retention - Automated data lifecycle management

📊 Metrics Store

  • Cube.dev - Semantic layer and metrics store
  • Metric Definitions - Centralized metric definitions
  • API-First Design - RESTful APIs for data consumption
  • Caching - Intelligent caching for performance
  • Security - Row-level security and access controls

Key Features Built

📥 Data Ingestion

  • Multi-Source Integration - 50+ data source integrations
  • Real-time Streaming - Sub-second data latency
  • Data Validation - Automated data quality checks
  • Error Handling - Robust error handling and retry mechanisms
  • Monitoring - Real-time pipeline monitoring and alerting

🔄 Data Processing

  • ETL/ELT Pipelines - Automated data processing workflows
  • Data Transformation - Complex business logic implementation
  • Data Aggregation - Multi-level data aggregation
  • Data Enrichment - Third-party data enrichment
  • Data Deduplication - Automated duplicate detection and removal

📊 Analytics & BI

  • Self-Service Analytics - User-friendly analytics interface
  • Custom Dashboards - Interactive dashboards and visualizations
  • Ad-hoc Queries - SQL-based ad-hoc query capabilities
  • Report Automation - Automated report generation and distribution
  • Mobile Analytics - Mobile-optimized analytics interface

🔍 Data Discovery

  • Data Catalog - Comprehensive data catalog and search
  • Data Lineage - End-to-end data lineage tracking
  • Data Profiling - Automated data profiling and statistics
  • Data Dictionary - Business glossary and data definitions
  • Data Governance - Data governance and compliance management

Technical Challenges Solved

⚡ Performance & Scalability

  • High Volume Processing - Handle terabytes of data daily
  • Real-time Processing - Sub-second data processing latency
  • Query Optimization - Optimized query performance for complex analytics
  • Auto-scaling - Cloud-native auto-scaling based on demand
  • Cost Optimization - Data processing cost optimization

🔒 Data Security & Privacy

  • Data Encryption - End-to-end data encryption
  • Access Controls - Role-based access controls
  • Data Masking - Sensitive data masking and anonymization
  • Compliance - GDPR, CCPA, and industry compliance
  • Audit Trails - Complete data access audit trails

🔄 Data Quality & Reliability

  • Data Quality Monitoring - Automated data quality checks
  • Data Lineage - End-to-end data lineage tracking
  • Error Handling - Robust error handling and recovery
  • Data Validation - Automated data validation rules
  • Monitoring & Alerting - Comprehensive monitoring and alerting

Business Impact

  • Data Processing Speed - 90% reduction in data processing time
  • Analytics Accessibility - 10x increase in self-service analytics usage
  • Data Quality - 99.9% data accuracy and reliability
  • Cost Reduction - 70% reduction in data infrastructure costs
  • Decision Making - Real-time insights for faster decision making

Technologies Used

Data Stack

  • Fivetran / Airbyte
  • DBT (Data Build Tool)
  • DLThub / Delta Lake
  • Cube.dev
  • Apache Kafka

Infrastructure

  • AWS / Google Cloud
  • Docker containers
  • Kubernetes orchestration
  • Apache Airflow
  • Monitoring with DataDog

Databases

  • PostgreSQL / Snowflake
  • MongoDB / Cassandra
  • Redis for caching
  • Elasticsearch
  • ClickHouse

Analytics

  • Tableau / Power BI
  • Grafana dashboards
  • Jupyter notebooks
  • Python / R analytics
  • Custom BI applications